

An Acquisition Perspective on Product
Evaluation

Grady H. Campbell, Jr.
Harry Levinson
Richard Librizzi

October 2011

TECHNICAL NOTE
CMU/SEI-2011-TN-007

Acquisition Support Program
http://www.sei.cmu.edu

CMU/SEI-2011-TN-007 | i

Copyright 2011 Carnegie Mellon University.

This material is based upon work supported by the Airspace Mission Planning Division, ESC/HBM under Contract No.

FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally

funded research and development center sponsored by the United States Department of Defense.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do

not necessarily reflect the views of the Airspace Mission Planning Division, ESC/HBM and the United States Depart-

ment of Defense.

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,

WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

 The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the

work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to

the copyright license under the clause at 252.227-7013 and 252.227-7013 Alternate I.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is

granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other external and/or commercial

use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

For information about SEI publications, please visit the library on the SEI website (www.sei.cmu.edu/library).

* These restrictions do not apply to U.S. government entities.

CMU/SEI-2011-TN-007 | ii

Table of Contents

Acknowledgments v

Executive Summary vii

Abstract ix

1 Introduction 1
1.1 Observations on Common Practice 1
1.2 The Nature of Product Evaluation 2
1.3 Limits to Testing as a Product Evaluation Method 3

2 Understanding Product Evaluation in an Acquisition Context 6
2.1 Product Evaluation Methods 7
2.2 Product Evaluation Activities during Product Development 8
2.3 Product Evaluation Activities during Product Acceptance 9
2.4 Orchestration of Product Evaluation Activities 10

3 Prerequisites to Product Evaluation 11
3.1 Acceptance Criteria vs. Requirements 11
3.2 The Testing Environment, a Development Effort in its Own Right 12

4 Evaluating a Product during Development 14
4.1 The Product Development Process 14
4.2 The Role of Product Evaluation in Product Development 16

5 Evaluating a Product after Development 18
5.1 The Role of Product Evaluation in Determining Product Acceptance 18
5.2 Product Evaluation for the Purpose of Product Acceptance 19
5.3 Product Evaluation as an Aspect of Sustainment 20

6 Product Evaluation in a Product Line Context 22
6.1 The Concept of a Product Line 22
6.2 Evaluating a Product Line to Reduce Product Evaluation Efforts 23
6.3 Establishing a Testing Product Line 24

7 Improving Product Evaluation Practices 26

References 30

CMU/SEI-2011-TN-007 | iii

List of Figures

Figure 1: The Product Acquisition Cycle 6

Figure 2: A Product Development Process 14

CMU/SEI-2011-TN-007 | iv

CMU/SEI-2011-TN-007 | v

Acknowledgments

The authors would like to thank the Department of Defense (DoD) programs that allowed us to
observe the many positive and negative examples that enabled us to create this technical note. We
would also like to thank the following for their technical and editorial assistance: John Foreman,
John McGregor, and Murray J. Connelly.

CMU/SEI-2011-TN-007 | vi

CMU/SEI-2011-TN-007 | vii

Executive Summary

The Software Engineering Institute’s (SEI) experience with a variety of DoD acquisition pro-
grams has shown the need for improvements in acquisition and sustainment product evaluation
practices. This technical note proposes a comprehensive approach to product evaluation that will
reduce acquisition and sustainment costs by increasing the quality of results and eliminating the
need for repeated testing and rework.

Current practice emphasizes testing as the principal means of determining whether a product
meets specified customer needs and quality criteria, but testing is time-consuming, expensive, and
inconclusive. Testing inherently occurs late in the development of a product when discovery of
defects requires rework; rework undermines the architectural integrity of the product resulting in
further testing, additional defects, and further rework.

Further experience in industry has shown that a variety of proven practices can augment and re-
duce this narrow dependence on testing; these include precise acceptance criteria, early validation
of product requirements to those criteria, and a disciplined iterative development process for con-
tinuous product integration. Others include more rigorous, technically focused reviews, performed
continuously throughout development. This will better ensure a systematic effort to reduce rework
through earlier detection of defects and an emphasis on a product line approach for eliminating
redundant efforts. Instituting these practices would provide the basis for more efficiently acquir-
ing products that will be of sound quality, responsive to the customer’s needs, and cost-effective
in the face of increasingly constrained budgets.

CMU/SEI-2011-TN-007 | viii

CMU/SEI-2011-TN-007 | ix

Abstract

This technical note focuses on software acquisition and development practices related to the eval-
uation of products before, during, and after implementation. From engagements with numerous
DoD acquisition programs, it has been observed that a number of recurring issues reduce the ef-
fectiveness of how software-reliant products are evaluated. An acquisition effort consists of iden-
tifying the customer’s needs, selecting or developing a product that is responsive to those needs,
and then evaluating the product to determine if it properly addresses the identified needs. This
technical note describes the Product Evaluation (verification, validation, and certification) process
including test, reviews, and formal methods. It also makes the argument that Product Evaluation
should not be deferred until after a product has been built, but should begin as soon as the cus-
tomer’s needs have been identified and should continue throughout the acquisition effort.

CMU/SEI-2011-TN-007 | 1

1 Introduction

Acquisition is a systematic effort to obtain products whose capabilities will improve the ability of
an enterprise to perform its mission. An acquisition effort consists of identifying the customer’s
needs, selecting an existing product or selecting a supplier to develop a new product that is res-
ponsive to those needs, and then evaluating that the as-built product properly addresses the identi-
fied needs. An acceptable product is deployed into use as part of an operational system and over
time is sustained to continue satisfying the needs for which it was built.

The effort of evaluating a product for acceptability should begin as soon as the customer’s needs
have been identified, but not deferred until after a product has been built, and should continue
throughout the acquisition. Evaluation requires gaining and maintaining a proper understanding of
the customer’s needs, advocating development practices that will reduce the frequency of defects,
and planning actions to identify and diagnose any flaws in the product while it is being built. Ear-
ly detection of defects is less costly both in terms of the effort required to make corrections and in
terms of maintaining product integrity. Product Evaluation (verification, validation, and certifica-
tion) encompasses all of the means that can be used to determine whether a product is going to
meet a customer’s needs—including testing, reviews, and formal methods.

The SEI has observed a number of recurring issues—in performing engagements with numerous
DoD acquisition programs and their associated development contractors—concerning how soft-
ware-reliant products are evaluated. This note focuses on issues related to how acquisitions ap-
proach the evaluation of products during and after development and suggests various potential
improvements in these practices.

1.1 Observations on Common Practice

More than half of a typical acquisition effort is spent evaluating the product that is being obtained.
The purpose of these evaluations is to determine whether the product is being built properly and
whether it provides the capabilities that a customer needs [Boehm 2001, Bennett 2005].

Much of the evaluation effort during product development is indirect, involving reviews of exten-
sive, as-built documentation without needed characterization of alternatives and tradeoffs consi-
dered or rationale for subsequent decisions. Without an understanding of how these considerations
have influenced product development, evaluation reduces to a determination of consistency and
completeness relative to perceived customer needs rather than whether the product is a best fit to
those needs given development constraints of cost, schedule, and technology.

After product development, evaluation reduces to anecdotal testing: effort focuses on finding in-
stances for which product behavior may differ from expectations in representative cases of opera-
tional usage. Differences, when determined to be defects in the product, trigger an indeterminate
but rushed period of rework during which the product is incrementally revised to work properly
given the chosen cases, but often also introducing new defects to be found and corrected.

At the root of this costly and ineffective approach to product evaluation is an initial description of
the customer’s needs that is typically poorly organized, inconsistent, incomplete, and yet prema-

CMU/SEI-2011-TN-007 | 2

turely over-specific in constraining potential solutions. Uncertainties about actual needs and ex-
pectations for potential future changes are seldom communicated. Acceptance criteria cannot be
precisely articulated with such a poor foundation, but is expressed instead in the form of test cases
that reduce broadly stated needs to necessarily narrow cases that are only representative examples
of those needs.

Reviews and testing will remain the primary means that acquirers and developers use to evaluate
the acceptability of a product; however, we can hope to improve these by looking more closely at
what constitutes proper evaluation of a product. In doing this, we need to consider several ques-
tions:

• Can product evaluation efforts be applied during product development in a way that will sig-
nificantly reduce discovery during product acceptance of defects that cause delay and the
need for costly rework?

• What is the optimum level of product testing? How much testing is needed to ensure that a
product is acceptable for use?

• Is testing effective for finding all of the defects that could reasonably be found? Are defects
being found that should have been found earlier, in reviews or prior testing?

• Are there techniques other than testing and reviews that can be used in order to increase con-
fidence in a product earlier or with less effort?

• How can the effectiveness of work product reviews be improved to ensure product quality
and reduce defects that would be found later through testing?

• When a product previously found to be acceptable is modified, does the product need to be
comprehensively reevaluated or can the effort needed to determine that the modified product
is also acceptable be reduced?

• In situations where multiple versions of a product are needed—tailored for different uses,
operational contexts, or technologies—can evaluations be leveraged in order to minimize per-
version evaluation costs?

1.2 The Nature of Product Evaluation

There are various views of a product, each expressed through a different representation [Kopetz
1976]. These representations must be mutually consistent, with each comprising a partial model of
the product that answers only certain questions about it:

• Customer needs: expressing the customer’s expectations concerning what capabilities the
product should provide

• Operational context: describing the physical and information environment in which the prod-
uct operates

• Acceptance criteria: defining the customer’s criteria (threshold and objective) for determining
whether the product is acceptable to be put into use

• Requirements: specifying the product’s expected behavior

CMU/SEI-2011-TN-007 | 3

• Design: specifying the architecture, constituent components, and prescribed organic and
emergent properties of a product that is a satisficing (satisfy and suffice) solution for the re-
quirements

• Implementation: constituting a concrete realization of each of the product’s components

• User documentation: defining how the product is operated and used as part of an organiza-
tion’s business/mission enterprise

The relationships and differences among these representations are illustrated in the following ex-
ample:

• Customer needs specify “no loss of critical data”

• Operational context specifies information that is accessible to the product from its environ-
ment

• Acceptance criteria specify what data is critical, that any data over 30 seconds old must be
recoverable within 30 seconds, and that any resulting data gaps must be logged and reported
to the system manager

• Requirements specify a product information model (including critical data items) and specify
retention and recovery policies that satisfy critical data retention acceptance criteria

• Design specifies a data integrity process and components for dynamic and persistent storage;
it specifies policies and interfaces for committing and recovering or rolling back data to a
consistent state and for detecting and handling data discrepancies.

• Implementation provides the components that realize the designed approach for ensuring data
integrity

• User documentation describes, from a user’s perspective, what to expect in terms of data cur-
rency and what happens if a gap occurs

The role of product evaluation in acquisition is to validate and elaborate the product acceptance
criteria in the form of reviews or tests that are then used to determine whether each of the other
representations properly and consistently satisfy that criteria. Through the process of evaluating
each of the product’s representations, the product is progressively shown as satisfying the cus-
tomer’s needs. When discrepancies arise, the cause must be traced to its source in one or more of
the product’s representations and corrected to reestablish mutual consistency.

1.3 Limits to Testing as a Product Evaluation Method

With the emphasis given to testing and the level of effort expended on it during an acquisition, it
is natural to assume that this is the best, or only, means that an acquirer can rely on to be sure of
getting an acceptable product. Testing alone, however, is not an adequate technique for evaluating
a software-reliant product; the limitations of testing are widely recognized and must be effectively
augmented with other methods of evaluation [Linger 1996; Spillner 2007].

It is not possible to determine conclusively whether a product has only prescribed behavior and is
free of defects. Testing can only show—in the best case—that attempted trials have produced ex-
pected results and have revealed no defects. The infinite combinatorial variety of potential valid
and invalid inputs and internal data/processing states of a product makes exhaustive testing im-

CMU/SEI-2011-TN-007 | 4

possible; only a representative coverage of possible inputs and states is feasible within a finite
schedule and budget. The most that testing can achieve is a level of confidence that testing per-
formed is representative of expected actual usage and that defects will not arise in operational
uses that do match the cases tested. This confidence can be undermined if different users follow
different usage patterns that cannot all be tested.

Not only is exhaustive testing not feasible, there is not yet a commonly accepted objective meas-
ure for determining when testing efforts have been sufficient to stop and declare the product ac-
ceptable for use. Again, the best option is to determine what criteria will be used to judge whether
testing has provided an adequate level of confidence that all critical defects have been discovered.
The best means for doing this is to design test sets that provide, based on estimated defect density,
a statistically sufficient level of code and path coverage, input data boundary condition coverage,
and scenario-based usage coverage.

A particular impediment to testing is the necessity that an operable product exists to be tested.
This means that testing finds defects at the time when rework is most costly. Whereas many types
of defects may be discovered using other techniques—such as reviews or analytic models that are
applicable to incomplete products, systemic defects, or emergent properties such as performance
or reliability—defects can be discovered with testing only through use of the product under spe-
cific conditions. These defects can be a result of fundamental architectural decisions that require
significant effort to change.

In addition, many types of processing logic are difficult to test, requiring initial computational
conditions that are difficult to replicate. In particular, concurrent forms of processing (including
multi-processor and multi-threaded, timing- and event-dependent, and distributed latency-
sensitive logic) are not understood well enough to predictably reproduce and diagnose complex
defects.

Testing must ensure not only that the product behaves correctly under normal conditions but also
that it behaves acceptably in the face of unexpected operational conditions (including failures).
Again, the most feasible approach is to categorize potential unexpected conditions and failures as
the basis for test sets that cover representative cases.

Software operates within the physical constraints of hardware; results of testing on different
hardware can produce different results depending on the software’s sensitivity to hardware cha-
racteristics. Slow processors can limit the software’s functional capabilities; fast processors can
expose undetected conflicts in concurrent resource/data sharing. Usage of needed hardware re-
sources (e.g., displays, data stores, sensors, effectors, communications) can be restricted if other
software also needs access to those resources at the same time. Different hardware can represent
data with different degrees of accuracy, precision, or value limits. Results of tests can change if
operational hardware differs from test hardware or if any changes are made in the operational
hardware. Similarly, product behavior, as well as corresponding test results, can differ if the be-
haviors of interacting systems are inaccurately modeled in testing or vary in unforeseen ways.
Analogously, training modes in the product’s behavior can exhibit these same issues to the degree
that inaccurate models are substituted for inaccessible parts of the actual environment.

The remainder of this note presents a more complete view of product evaluation as the practice
within an acquisition effort for determining whether a product is going to satisfy the stated needs

CMU/SEI-2011-TN-007 | 5

of a customer. Section 2 gives an overview of the elements of product evaluation, whereas Sec-
tions 3-5 discuss (in more detail) the preparation for and performance of evaluations during and
after product development. Section 6 discusses product evaluation in the context of a product line
acquisition and Section 7 suggests specific actions that can be taken to improve product evalua-
tion practices in general.

CMU/SEI-2011-TN-007 | 6

2 Understanding Product Evaluation in an Acquisition
Context

Viewed broadly, acquisition encompasses product development and product acceptance (Figure
1). Product development entails obtaining a usable product that targets identified customer needs,
whereas product acceptance entails determining whether the obtained product is a proper fit to
those needs. Product evaluation is an essential element of both of these.

Figure 1: The Product Acquisition Cycle

More specifically:

• Product Development consists of the iteratively performed activities of systems and software
engineering (requirements, design, implementation, and integration) required in creating a
product. The role of product evaluation during development is to verify that the product is be-
ing correctly developed (i.e., consistently across all work products as specified) and that it is
converging on specified customer acceptance criteria.

• Product Acceptance consists of integrating the product with other system elements and per-
forming product evaluation to determine whether the product behaves correctly in its ex-
pected usage. The product must be verified against customer acceptance criteria and validated
that it provides the customer with the operational capabilities actually needed; any diver-
gences from expectations must be diagnosed and characterized as defects for disposition in a
subsequent iteration of product development.

Product evaluation begins—at or before the start of product development—with the formulation
of customer acceptance criteria. This representation is an explicit and objective characterization of
acquirer-specified customer needs and gives product development and product acceptance efforts
a shared view of those needs. Although, in the end, a product will be judged acceptable only if it
behaves operationally in the way that the customer expects, the definition of formalized accep-
tance criteria helps to ensure that expected behavior has been communicated accurately. Equiva-
lently, this provides an early basis for systematically identifying and correcting any omissions,
ambiguities, or misunderstandings concerning the customer’s needs as communicated. With this
basis, product evaluation becomes an objective means for determining whether a product should
be accepted for deployment and use.

During product development, product evaluation must be performed both collaboratively with
engineers and evaluators and independently to ensure a quality product that will meet customer
acceptance criteria. During product acceptance, product evaluation should be chartered as exclu-
sively representing the interests of the acquisition and customer organizations. Further, product
evaluation should be coordinated across product development and product acceptance to ensure

Product

Defects

 Accept

Product

Customer Develop

Needs

Customer

CMU/SEI-2011-TN-007 | 7

that development and acceptance efforts are working toward satisfying commonly understood
customer acceptance criteria as the authoritative definition of targeted customer needs. Develop-
ment and acceptance activities can operate concurrently, iterating through product versions until
the product has been determined to be acceptable for customer use.

2.1 Product Evaluation Methods

Although testing is an essential element of product evaluation, it is not the only (or always best)
means of establishing the acceptability of a product [Linger 1996]. Effective product evaluation
relies on a mix of methods that can ensure early, least-effort discovery of defects for correction.
These methods broadly include reviews, testing, and formal methods, augmented by runtime me-
thods that can limit the impact of undetected defects.

2.1.1 Reviews

The most cost-effective technique for product evaluation is reviews by a mix of mentors, peers,
and subject matter experts [Pomeroy-Huff 2009]. While testing requires an operable product as its
subject, reviews can occur anytime during development as various work products are produced.
By properly reviewing each work product, defects can be discovered and corrected before work
has even started on other work products that might depend upon it. Product evaluators looking
across related work products can discover inconsistencies in how developers understand the cus-
tomer’s needs and the technical approach being taken and how these inconsistencies can be re-
solved to avoid defects. To be most effective, reviews should focus each reviewer on specific
technical questions, particularly emphasizing areas that the author views as difficult or uncertain.

2.1.2 Testing

Testing is an important means of product evaluation because it builds directly upon knowledge of
how an enterprise operates [Perry 2000; Bhor 2001; McGregor 2001; Spillner 2007]. However,
testing is also necessarily an anecdotal method in that it is impossible even to enumerate, much
less test, all of the conceivable ways that a product might be used under all conceivable condi-
tions. To mitigate the impossibility of exhaustively testing a product in all the ways it may be
used, a strategy of layered progressive testing is widely used. Testing proceeds in layers corres-
ponding to the logical structure of the solution, the assumption being that testing at each level will
be effective at discovering defects that occurred at the corresponding stage of development.

• Component: The product design specifies a set of components whose implementations com-
prise the base units from which a product is constructed. Each component is independently
tested to confirm that its implementation conforms to its design.

• Product: The product being acquired is constructed by selecting and integrating verified com-
ponents in accordance with the design. The product as a whole is then tested, following sce-
narios that approximate how the product will be used, to verify that its behavior conforms to
its requirements.

• System: The product is integrated with other elements of the customer’s operational environ-
ment to verify that the product behaves as expected, as specified in the customer acceptance
criteria.

CMU/SEI-2011-TN-007 | 8

• Operational: The integrated system is validated as behaving according to customer expecta-
tions in light of current operational needs.

Testing is a means to evaluate a product based on specific scenarios and test cases that represent
each tester’s understanding of how the product will be used. Testers must select scenarios and
cases that seem representative of the inputs and actions that the product is most likely to encoun-
ter in actual use, as well as cases that represent less common or abnormal uses but that could ex-
pose defects with more significant detrimental effects.

Even with a sound means to identify cases that might have been missed, testing alone is not going
to discover every defect in a product. The challenge, then, is determining how to focus testing
efforts to get the best results and how to use other methods to augment product quality. Getting
better results means having higher confidence that fewer significant defects remain to be discov-
ered and corrected later. Significant defects are those that have the greatest impact on correct be-
havior of the product, particularly those that limit effective performance of the customer organiza-
tion’s mission.

2.1.3 Formal Methods

In addition to reviews and testing, options are emerging for greater use of formal methods that can
reduce the amount of time spent on evaluations or to expose defects that are otherwise difficult to
discover. Formal methods include techniques such as static analysis, static or symbolic testing,
assurance cases and model-based dynamic analyses for verifying quality factors, and domain-
specific, correct-by-construction engineering methods [Weinstock 2004; Feiler 2010].

Reviews and formal methods are particularly relevant in the context of product lines where testing
of individual products alone would provide inadequate leverage. Reviews and formal methods
that can be applied to an abstractly represented set of similar, yet-to-be-developed products pro-
vide the means to verify satisfaction of criteria and expose defects across an entire set of similar
products.

2.1.4 Runtime Strategy

Although a systematic effort to use a variety of methods to detect defects can improve the quality
of products, no combination of methods can guarantee the complete absence of defects. To pro-
vide a final level of protection, there should be a runtime strategy and mechanisms implemented
in the product to detect and handle failures due to undiscovered defects, limiting their potential
impact and retaining information that will enable subsequent diagnosis and correction. A part of
product evaluation is to ensure that this strategy and its associated mechanisms are in place.

2.2 Product Evaluation Activities during Product Development

Product evaluation during development has the purpose of helping to reduce product acceptance
efforts and delays that result from late discovery of defects requiring rework. By helping develop-
ers discover (understanding and construction) errors as early as possible, the effort required to
correct those errors and to maintain consistency among all work products is minimized.

CMU/SEI-2011-TN-007 | 9

Product evaluation activities during product development consist of

• Reviewing customer acceptance criteria to ensure that customers’ needs, as currently unders-
tood, are being properly communicated

• Reviewing requirements to ensure consistency with customer acceptance criteria and other
available information concerning business process, operational environment, and future cus-
tomer needs

• Reviewing design (architecture) for consistency and completeness relative to requirements
and proper consideration of design alternatives and tradeoffs

• Reviewing formal design-and implementation-level models that provide analyses of evidence
for satisfaction of specified quality factors

• Reviewing design (component specifications) for consistency and completeness relative to
architecture and conventions

• Reviewing internal designs of components for consistency and completeness relative to their
specifications

• Reviewing component implementations for consistency and completeness relative to their
specifications and internal designs

• Advising and assisting in the construction of component and integration test materials (using
relevant elements of the product testing infrastructure as appropriate) and reviewing compo-
nent and integration test results for evidence of defects

• Developing and performing integration tests to ensure that components work together to pro-
vide an operable product, identifying and diagnosing any discrepancies

• Developing and performing product-level behavioral testing to verify conformance with re-
quirements (to identify and diagnose any behavior that diverges from expectations)

• Analyzing the causes of any identified defect to determine whether improvements in devel-
opment or evaluation practices could avoid or detect such defects earlier

For increased effectiveness, product evaluators should be collaboratively paired with product de-
velopers to help identify and clarify any misconceptions concerning customer needs and to im-
prove the quality of developer verification efforts. Product evaluators that assist multiple develop-
ers can help ensure consistency of understanding and solution approach among them. The goal of
product evaluation during product development is to discover and eliminate defects through the
active involvement of increased domain knowledge and continuous verification. Although a de-
velopment environment may not permit exact replication of operational conditions, awareness of
potential differences can help to isolate the scope of the impact of those differences on the prod-
uct.

2.3 Product Evaluation Activities during Product Acceptance

The purpose of product acceptance is to ensure that a product will behave as needed and expected
in the specified context of its operational use. Product acceptance has two aspects:

• Verification: determining that the product is a correct solution to the problem as understood

• Validation: determining that the product properly addresses the customer’s needs

CMU/SEI-2011-TN-007 | 10

Product evaluation for product acceptance occurs at two levels: system and operational. System
evaluation begins with system integration—installing the product with other hardware and sys-
tems to create a facsimile of the complete operational environment. The product is then verified as
operating properly in that environment—following representative business process scenarios—in
accordance with customer acceptance criteria. Operational evaluation validates whether the prod-
uct will satisfy specified customer needs when used by representative users in performing speci-
fied business processes in the actual (or a closely representative) business operational environ-
ment.

2.4 Orchestration of Product Evaluation Activities

Performing product evaluation requires more than the direct efforts of reviewing, analyzing, and
testing the product and constituent work products; it requires setting up a framework that is con-
ducive to performing product evaluations effectively and efficiently. This requires additional ef-
fort, entailing several activities that can be performed prior to or concurrent with primary product
development and product acceptance activities:

• Augmenting requirements derived from customer needs, by specifying required capabilities
and instrumentation that will enable the observability that is needed for product evaluation ac-
tivities

• Planning activities, staffing, and resources that are needed to perform product acceptance

• Building a test environment by replicating or emulating the product’s specified operational
environment

• Acquiring operational data and/or tools that can be used to generate appropriate test data

• Acquiring and tailoring the tools needed for analysis and reporting of observed versus ex-
pected product behavior indicated by test results

• Acquiring and installing required operational hardware and/or emulators to support testing

• Development of operational scenarios, which consist of tests that emulate normal and excep-
tional product use, and definition for each test of expected results, which characterize the
product’s expected behavior

• Building and installing the product—with appropriate instrumentation—to operate in the test
environment

• Performing tests to collect results and operational profile data

• Analyzing test results and operational data in order to diagnose, report, and track defects indi-
cated by differences in expected versus observed product behavior

CMU/SEI-2011-TN-007 | 11

3 Prerequisites to Product Evaluation

The role of product evaluation in acquisition is to determine whether a product that is being ac-
quired is suitable for operational deployment and use. The objectives of this effort are to ensure
that the purpose of the product is properly understood, that corresponding criteria for its accep-
tance by the customer are clear, and that the product meets those criteria.

Effective product evaluation begins from a proper definition of the customer enterprise and the
activities of that enterprise that the product is meant to support. A proper definition of an enter-
prise includes knowledge of the business objectives, roles, processes, and procedures that the en-
terprise performs. The concern for product evaluation with this is that the enterprise definition
properly informs the intended purpose of the product.

3.1 Acceptance Criteria vs. Requirements

Acceptance criteria and requirements are alternative representations of customer needs that the
product is meant to satisfy. They differ in that the acceptance criteria define the minimal capabili-
ties that the product must exhibit to be acceptable to the customer, whereas the requirements—
after refinement through analyses of engineering alternatives and tradeoffs—characterize the ob-
servable behavior of a specific solution. From a product evaluation perspective, requirements
must specify product behavior that will satisfy customer acceptance criteria and then the product
as-built must satisfy these stricter requirements. During product acceptance, product evaluation
must only verify that the product, which has been shown during development to meet validated
requirements, as a whole does in fact conform to the acceptance criteria.

For product evaluation to be effective, product development methods must anticipate the tech-
niques that will be used to verify intermediate work products. In preparation for product develop-
ment, product evaluation should ensure that the methods to be used, and any supporting automa-
tion, provide for observability of work product content and include documentation of
assumptions, alternatives considered, and rationale for choices made.

A particular challenge in choosing development methods is achieving a balance between describ-
ing the capabilities that are needed in a product and prescribing a specific solution. Some prevail-
ing techniques tend to promote concrete, overly specific descriptions because these are more easi-
ly conceived and understood from the perspective of a user. Examples of this are often seen in the
common practice of defining requirements as free-form “shall” statements or as more stylized use
cases. These and other such techniques benefit from a user’s ability to describe how they work or
how they expect a product to behave. The drawback of these more prescriptive forms of specifica-
tion is that they depend upon users making assumptions and choices that prematurely eliminate
potentially better alternatives. Furthermore, the actual variety of ways and conditions in which a
product may be used precludes describing in detail all of those conceivable uses and the result is
that the set of such descriptions is unavoidably incomplete; while more abstract forms of descrip-
tion exist, it is more difficult for people to understand and envision implications of such descrip-
tions until a final product has been developed.

CMU/SEI-2011-TN-007 | 12

The goal of product evaluation is to encourage practices, regardless of method, that distinguish
adequately between essential characteristics of a needed product and those that are only included
for sufficient descriptive completeness to enable shared understanding. The best choice may be a
mix of a more formal notation that supports precise specifications and an associated, less formal
notation that is more anecdotal and overly detailed as an aid to understanding, with the formal
notation being authoritative.

3.2 The Testing Environment, a Development Effort in its Own Right

To provide valid results, testing requires an environment that is an adequate approximation of the
actual operational environment. This requires an operable form of all the elements with which the
product interacts, including both the equipment that comprises the computing infrastructure and
other systems (adversarial systems, natural forces, unintentional operator actions, etc.) and devic-
es that operate in that environment and communicate or share resources with the product. If op-
erational versions of other systems and devices are not available, their behavior must be simu-
lated.

Just as the customer’s needs are the basis for building the product, the basis for building the test-
ing environment is the customer’s description of the product’s operational context. Operational
context defines the nature of the operational environment into which the product will be deployed.
If the customer’s characterization is not properly understood and adequately realized in the test
environment, evaluations of the product may lead to incorrect conclusions regarding the quality
and acceptability of the product.

In addition, both the environment and the product must be configurable and controllable as
needed to perform the various test scenarios. This includes a mechanism to initialize the data state
of the environment and the product to represent a prescribed initial state for each test scenario.
The testing environment must also support instrumentation that enables the profiling of internal
behavior and the collecting of data about the product’s behavior that is needed to perform quantit-
ative and qualitative analyses of the product’s properties.

The testing environment is a framework for evaluating not only the operable product, but also the
documentation and support that are needed by users of the product. This documentation must be
further augmented with information on the use of the testing environment itself as a container in
which the product and encompassing system of interest operate. To some degree, the testing envi-
ronment is more complex than that product or system because it must include observability me-
chanisms for controlling the rate at which computation and inputs progress to permit in-progress
examinations and analyses.

Beyond building the testing environment, there is the option of additional automation for the use
of the environment. This includes the ability for one-step operation of scenarios that perform in-
itialization, simulate operator inputs, record test results, and evaluate results against expectations.
This is particularly useful for purposes of repeated regression testing as parts of the product
evolve or to simulate and evaluate the product’s behavior in response to potential future changes
in its environment.

In the same way that the product evolves over its lifetime, the testing environment needs to ac-
commodate changes in its representation of the operational environment. If the testing environ-

CMU/SEI-2011-TN-007 | 13

ment is built in a way that anticipates or is adaptable to future changes, it should be usable over
the full lifetime of the product without significant additional investment. In fact, the testing envi-
ronment should be viewed as an element of the product that is sustained in consonance with the
product.

CMU/SEI-2011-TN-007 | 14

4 Evaluating a Product during Development

During product development, product evaluation is a collaboration between the developer and the
acquirer. Product evaluation during development is meant to ensure that the resulting product will
satisfy the customer’s formal acceptance criteria with a minimum of evaluation effort during ac-
ceptance and without the need for rework.

4.1 The Product Development Process

Figure 2 depicts a generalized product development process. This process involves repeated feed-
back and iteration among the activities of development. Arrows indicate information flow be-
tween activities; activities may be performed simultaneously on different elements, increments, or
versions of a developing product. This process is controlled by a continuous management activity
that consists of planning and resource allocation, monitoring and metrics, configuration manage-
ment, and process quality control. The nature of product evaluation during this process, including
reviews and testing, is discussed in more detail below.

Figure 2: A Product Development Process

Although convention seems to favor distinguishing between activities of systems and software
engineering, this discussion takes the view that software engineering activities are properly an
aspect of systems engineering and cannot be deferred and treated separately [Campbell 2004].
Systems and software engineering alternatives and tradeoffs are interdependent; implications are
often systemic, transcending any apparent distinctions. Differences in how hardware and software
components are produced are the purview of the implementation activity; this facilitates deferring
or changing the hardware/software implementation of any component. This means that other ac-
tivities must address both system and software perspectives within the systems context: software
requirements, design, and integration must be understood and addressed as an integral part of de-
fining system requirements, design, and integration.

Product development begins with an analysis of acquirer-specified customer needs, resulting in
the definition of acceptance criteria. These criteria are the formal basis against which product ac-
ceptance will be determined.

Requirements

Design

Implementation

Integration

CMU/SEI-2011-TN-007 | 15

From these needs and criteria—augmented by engineering analyses of alternatives and tra-
deoffs—a specification of the product’s requirements are derived. Requirements define the prod-
uct’s build-to observable behavior. As the product is developed (and later evolved), these re-
quirements constitute an as-built specification of the product’s expected behavior.

Verification that the product’s requirements comply with acceptance criteria—along with subse-
quent verification that the product as built satisfies those requirements—should be sufficient to
provide confidence that the product is going to satisfy product acceptance evaluations.

Product design specifies an architecture for the product, defining a consistent set of alternative
views of the product’s structure. These views specify the content, interdependencies, and interac-
tions of the components that concretely implement the product. Further, each of these views con-
stitutes a partial model of the product that provides answers to specific questions about how the
product, and each of its components, is to be constructed. The following is one possible set of
views:

• a module decomposition view that identifies and specifies the product’s components

• a concurrency view that specifies the process/task scheduling and communications elements
and interactions implemented by components

• a configuration view that specifies mapping of elements onto physical devices and computa-
tional hardware

• a dependency view that defines data and control dependencies among components and is used
as a guide to the composition of operable product versions for incremental, reduced-capability
integration

The design must be reviewed and analyzed to ensure that it documents and substantiates a techni-
cally credible solution approach that can be reasonably implemented with available time, exper-
tise, and resources. The module decomposition view partitions the implementation effort into dis-
tinct components that can be assigned to developers based on their having requisite knowledge
and expertise. All of the views defined in the design must be realized in the implementation of
these components.

For each of the components specified in the design, an implementation is designed, written, and
verified in keeping with the various design views. Implemented components should be verified
through active reviews. Component-level testing can be used to analyze whether each component
provides expected interface capabilities, behavior, and effects on quality factors. Testing can inte-
grate already-verified dependent and supporting components to reduce the test preparation effort.

Integration, as the complement of design, creates an integrated operable version of the product by
configuring and composing a selected set of verified components, as specified in the dependency
view of the product architecture. This product version (which may be incomplete) is then verified
against anticipated product behavior as specified by the requirements. The integrated product
should be instrumented for use in the testing environment to enable dynamic monitoring, profil-
ing, and analysis of its operational behavior. The product may be integrated with operational
hardware and installed into its (actual or simulated) operational environment for more realistic,
but controlled experimental use of the product following simplified and actual customer usage
scenarios.

CMU/SEI-2011-TN-007 | 16

Product evaluation, as an element of integration, verifies that the product as built and operated
within the development environment satisfies its requirements. If the requirements were verified
as being responsive to customer acceptance criteria, it is reasonable to expect that the product
should in turn satisfy the less restrictive customer acceptance criteria and therefore be ready for
product acceptance. Defects that arise after product verification should be traceable predominantly
to limitations in being able to replicate the system operational environment within the develop-
ment environment.

4.2 The Role of Product Evaluation in Product Development

During product development, the role of product evaluation is to ensure that the completed prod-
uct will satisfy the acquirer’s and customer’s acceptance criteria. Product evaluation therefore
must participate in every product development activity.

In general, product evaluation’s role is to determine whether

• information is presented in an understandable (clear, concise, consistent, well-structured)
form

• terminology is properly defined and consistently used

• alternatives, tradeoffs, and rationale regarding important decisions are properly documented

• uncertainties, differing views, and potential future changes in needs, technology, or business
context have been properly identified and addressed

For requirements, product evaluation’s role is to determine whether

• customer needs have been adequately communicated by the acquirer, accurately documented
in the acceptance criteria, and properly understood by the developers as expressed in the re-
quirements

• requirements adequately define expected observable behavior for a product that, properly
built, will satisfy specified acceptance criteria

• requirements specify that the product will include mechanisms and documentation of ratio-
nale as needed to make effective reviews and testing feasible

• changes are being made in requirements as development improves understanding of needs,
alternatives, and tradeoffs to accurately represent the product being built

For design, product evaluation’s role is to determine whether

• all aspects of requirements content are understood as communicated and represented ade-
quately in the design

• different architectural views and models are defined as needed to permit analyses and evalua-
tions of product behavior

• component specifications, including interfaces and dependencies, provide sufficient guidance
to enable implementation by developers

• all significant quality factors have been identified and characterized in terms of design alter-
natives and tradeoffs

CMU/SEI-2011-TN-007 | 17

• the design provides means and mechanisms to operate properly in response to invalid actions
or information, failures, and faults

For implementation, product evaluation’s role is to determine whether

• the implications and realization of all architectural views for each component are understood
by its implementer

• specifications of related components are being properly applied

• the internal design of each component identifies and properly organizes all of its elements

• each component properly implements its specification

• component verification criteria reflect the ways the component will be used

For integration, product evaluation’s role is to determine whether

• the composition of a set of components, as specified in the design, is operable in the devel-
opment test environment

• representative scenarios for expected use of the product behave as specified in the require-
ments

Throughout development, as well as during acceptance and sustainment, product evaluation must
ensure that when a defect is discovered it is corrected and its cause is determined. Requisite cor-
rections must then be propagated throughout all product representations to maintain consistency
(e.g., correcting a design defect may also require changes in both requirements and implementa-
tion). Beyond this direct response, it should be determined whether an improvement in develop-
ment or evaluation practices could preclude such defects in the future or cause them to be discov-
ered earlier.

Product evaluation must determine whether a product satisfies customer acceptance criteria. Man-
agement may decide that a product is adequately responsive to customer needs and should be
submitted for product acceptance even when certain criteria are not met. This can be the result of
customer tradeoffs in cost schedule versus capability, better understanding of actual needs gained
during development, or impending changes in customer needs. This judgment should result in the
revision of the customer acceptance criteria with the reasons for this decision for reference during
product acceptance and sustainment.

CMU/SEI-2011-TN-007 | 18

5 Evaluating a Product after Development

Regardless of whether an acquisition is considering an off-the-shelf (commercial or publicly ob-
tainable) product or a custom-developed product, the product should be evaluated in terms of
whether its observable behavior—augmented by documented evidence of its proper construc-
tion—satisfies identified customer needs. At this point, the acceptance criteria should be a clear
representation of the customer’s needs. This high level of confidence is due to the growing expe-
rience with the off-the-shelf product or to product evaluation efforts during product development.

To establish acceptability of a product, product evaluation is performed progressively to indepen-
dently verify and validate the product:

• System verification: During development, the product has been verified, in a facsimile of the
operational environment under representative operational scenarios, as meeting its require-
ments, and the requirements have been validated as consistent with customer acceptance cri-
teria. The product must be integrated with other elements of the customer’s operational sys-
tem and verified as meeting aggregate customer acceptance criteria in a close approximation
of the actual operational environment.

• Operational evaluation: having satisfied system-level product evaluation criteria, the product
is subjected to validation involving representative operators/users in an accurate approxima-
tion of the operational environment and usage scenarios to determine if it is fit for its in-
tended use.

• Delivery: A validated operational product must be installed with documentation, training,
and assistance for users. Use of the product results in customer feedback on issues encoun-
tered, required workarounds, and projected future needs.

• Sustainment: An installed, in-use product over time begins to encounter changing customer
needs. This leads to recurring performance of acquisition activities to produce, accept, and
deliver revised versions of the product.

Finding defects either in product quality or in product fit to the customer’s needs during product
acceptance is costly, resulting in either a delay for rework or the acceptance of an inferior product.
However, when a defect that prompts rework is discovered at this stage, action should be initiated
not only to correct the defect through the required rework (depending on severity, immediately or
in a future product revision), but also to determine why the defect was not discovered sooner, pre-
ferably during product development, and corrected then. A subsequent action should be to amend
product evaluation procedures so that this and any similar defects are detected during develop-
ment, rather than during product acceptance.

5.1 The Role of Product Evaluation in Determining Product Acceptance

Optimistically assuming that there are no defects, a product should conform to its associated as-
built requirements. The requirements should define what behavior can be expected of the product
in operation. The purpose of product evaluation in this case is to determine whether this expected
behavior meets both customer acceptance criteria and more broadly, current actual customer

CMU/SEI-2011-TN-007 | 19

needs. If the product fails to adequately satisfy this criteria, the acquirer and customer may decide
to reject the product, accept the product, or consider critical changes to make the product accepta-
ble. Changing a product that failed to satisfy its acceptance criteria requires making corresponding
revisions in that criteria so that it matches. The evaluation of requirements during product devel-
opment should have discovered any discrepancies with acceptance criteria; any failure to accept at
this point would be the result of not having properly expressed the customer’s needs or by an un-
anticipated change in the customer’s needs.

Although requirements provide a nominal basis for evaluating the product, actual acceptance re-
lies on criteria that may be implied in the requirements, but are made explicit only in the form of
evaluation criteria. These criteria are created specifically as a guide for product evaluation, to de-
fine more precisely what requirements are understood to mean operationally.

A product is judged acceptable to the degree that it behaves in the way that the customer expects,
regardless of whether the expected behavior was accurately communicated in the requirements.
Product evaluation, as a proxy for acquirer and indirectly customer judgment, must establish
through its realization of acceptance criteria whether a product is behaviorally acceptable for dep-
loyment and use.

5.2 Product Evaluation for the Purpose of Product Acceptance

When product development results in a candidate product release, the acquirer must determine
whether the product as built is acceptable for deployment into operation.

Product acceptance includes three levels of product evaluation:

• Verification: determining that the product is a correct solution to the problem as understood
and expressed in customer acceptance criteria.

• Validation: determining that the product properly addresses the customer’s actual current and
future needs.

• Certification: determining that the product satisfies all organizational and statutory require-
ments concerning safety, security, and legal regulation applicable to its operational environ-
ment.

Verification during product acceptance consists of reviews of documents for consistency and
completeness and system testing. This is a determination that the product has been built as speci-
fied and works properly with other separately provided components of the system. If product
evaluation was properly performed during development, failures of this type should not occur dur-
ing acceptance; any verification defect found during product acceptance should be traced to its
source in product development so that the product evaluation processes can be refined to expose
this type of defect earlier.

Validation during product acceptance takes the form of operational/acceptance testing. This is the
determination that the product provides the customer with the capabilities needed to perform their
work effectively; this means that the requested capabilities correspond to what the customer ac-
tually needs at the time of completion. The evaluation can fail if the acquirer misunderstood the
customer’s needs or specified those needs incorrectly; this type of failure is less likely if repre-
sentative users have been consulted during product development. Alternatively, this evaluation

CMU/SEI-2011-TN-007 | 20

can fail if the developer misunderstood the customer’s needs as communicated by the acquirer
This misunderstanding should not be discovered during product acceptance, if during product de-
velopment, the proper use of requirement and design reviews were conducted reflecting the cus-
tomer’s needs.

Validation requires the formal participation of customer representatives and is not constrained by
formal acceptance criteria defined for the acquisition. The success of validation depends, howev-
er, on the acceptance criteria having accurately characterized the acquirer’s and customer’s expec-
tations concerning the needed product’s capabilities and behavior. If those needs have been mi-
sunderstood or misrepresented, or have subsequently changed, the product may be deemed
unacceptable by the customer. The role of product evaluation in this respect is to establish and
maintain visibility with the acquirer and customer representatives—and their active participation
when possible—to ensure that the acceptance criteria properly describe their expectations. Accep-
tance criteria should include not only a characterization of customer needs, as they initially exist,
but also a characterization of uncertainties and potential/anticipated changes in those needs.
Awareness of uncertainties and prospective changes during development facilitates modifications
in the product both before deployment and during sustainment.

Certification is the determination that the product conforms to organization, industry, and gov-
ernment rules and regulations regarding safety and security. The role of product evaluation in this
process is to ensure that the product has been built in such a fashion that it will meet these criteria.
This is substantiated by the proper recording, as part of process quality assurance, of associated
safety and security assurance actions taken during development. As a rule, these criteria will be
met if the product development process can be seen to have properly addressed the issues and tra-
deoffs that motivate standards of safety and security.

5.3 Product Evaluation as an Aspect of Sustainment

For most of their useful lives, products are in sustainment, encompassing both maintenance and
follow-on acquisition. Maintenance includes monitoring and adjusting operational parameters,
detecting and correcting residual defects, and replacing expendable parts and supplies, whereas
follow-on acquisition involves modifying or replacing the product over time as the customer’s
needs change so that those needs will continue to be satisfied. As the proper complement to de-
velopment, follow-on acquisition requires that all aspects of development and acceptance be re-
peated in order to ensure not only needed advances, but also continued integrity of the product’s
specification and behavior. Only by revisiting all aspects of development and acceptance can the
acquirer and customer be assured that all implications of the required changes have been properly
identified and addressed. Similarly, in the context of sustainment, all elements of product evalua-
tion must be revisited to ensure proper repeat performance of an acquisition’s product develop-
ment and acceptance activities.

It is not sufficient during follow-on acquisition to consider only the direct effects of changes on
the product—specifically for software but also to a degree for hardware. Implications of a change
can often cascade into unexpected areas of behavior through complex low-level interactions such
as indirect sharing of resources or unpredictable sequencing of communications and processing.
In some cases, hardware can be sustained by substitution of one part with another of physically
equivalent but improved capability; even in this case, as with software changes, improved capabil-

CMU/SEI-2011-TN-007 | 21

ity usually implies potential behavioral differences that may change timing or informational de-
pendencies with other parts of a system, requiring that the system be reevaluated.

As a sustainment activity, the details of product evaluation differ from prior occurrences to the
degree that the product itself differs. There may be changes in requirements, design, implementa-
tion, and integration work products that require corresponding changes in the materials of product
evaluation. For example, changes may mean that different quality factor tradeoffs would need to
be considered or different user scenarios would need to be tested. Similarly, new, modified, or
deleted components that integrate differently could result in new or changed product behavior and
would require testing revisions. The infrastructure of product evaluation developed during the
initial acquisition can still be used, but its details must be revised to account for the implications
of any changes. During iterations of the initial acquisition, the product must be reevaluated to en-
sure that prior behavior remains unchanged with respect to any aspects that should not have been
affected by the changes (i.e., regression reviews and testing).

CMU/SEI-2011-TN-007 | 22

6 Product Evaluation in a Product Line Context

The traditional, large system conception of acquisition is the development of a manufacturing fa-
cility that is operated to produce a series of largely identical products. More recently, the manu-
facturing approach has evolved to permit the products coming off the line to differ in ways that
are more substantial. With the increasing reliance on software as a determinant of product capabil-
ity, the opportunity exists to customize each product to satisfy specific operational needs. From a
systems and software engineering perspective, this opportunity has been formalized as a systemat-
ic “product line” approach to acquisition [Campbell 2002].

6.1 The Concept of a Product Line

A product line is a set of products that satisfy similar needs. Differences in similar products may
be essential—corresponding to differences in customers’ needs—or they may be incidental, cor-
responding to differences in how developers have chosen to build the products.

Although similar products can and have been developed independently, doing so entails duplicate
efforts during both development and sustainment and typically leads to unnecessary differences
among those products. This duplication can be somewhat mitigated when the same engineers are
responsible for those products, to the degree that they recognize and can maintain the similarity of
the products over their lifetimes; however, a more systematic approach exists for creating cohe-
rent product lines. This approach—based on the concept of a product family—optimizes produc-
tivity and quality by minimizing essential differences and avoiding incidental differences among
products.

A product family envisions a potential set of similar products; these products are alike in many
ways (commonalities) but differ in certain particular ways (variabilities). A product family
represents a set of products implicitly, in an abstract form that provides the means to rapidly de-
rive a product that is customized to fit a customer’s specific needs. Variabilities represent custom-
er and engineering choices—in areas such as mission, business practices, technology, and opera-
tional environment—that must be made in order to build a specific product. These choices (in
aggregate) determine the exact content of each work product, from requirements and design speci-
fications to component implementations and user documentation. The products that are derived in
this way, as instances of a product family, constitute a coherent product line. The effort to build
individual products leverages the effort applied to creating the product family, resulting in the
elimination of duplicate efforts across the product line.

An analogous case exists for treating a single product as a product line opportunity. For most
products, there are uncertainties in customer needs and expectations for potential changes across
the useful life of the product. These uncertainties and changes can be accommodated by conceiv-
ing of the evolving versions of the product as being distinct instances of an encompassing product
line: each new version of the product could then be derived as an instance of that product line.

As discussed more broadly in McGregor, a product line approach suggests two opportunities for
improving product evaluation costs and effectiveness. The first opportunity, exploiting the as-
sumed similarity of products, leverages evaluation efforts across the product line by pre-verifying

CMU/SEI-2011-TN-007 | 23

product line assets; this will improve the quality of each individual product while reducing the
evaluation effort. The second opportunity concerns applying product line concepts in the devel-
opment of product testing assets and capabilities [McGregor 2001].

6.2 Evaluating a Product Line to Reduce Product Evaluation Efforts

The first opportunity for improvement results directly from the need to build similar products. By
specifying an architecture that describes any of the family of products equally well, a product line
defines a set of components that can be reused to build customized instances of that product fami-
ly. As with developing any component, assets should be separately evaluated prior to use in any
product. These reviews and tests will provide an initial level of assurance that the components
will be usable without further effort in any instance of the product family; in addition, because
these assets are used in multiple products, subsequent testing of any instance product built using
an asset has the effect to some degree of testing that asset across all similar products. With this
added basis in prior testing, not only will evaluation efforts for future products be reduced, but
those products will also exhibit higher quality, with fewer defects requiring less rework.

The objective with a product line is to substantially reduce the time required to create a product
with a specified level of quality (e.g., no known critical defects and meeting threshold levels of all
quality factors). Although a product line does enable the rapid, low-cost development of new and
modified products, the artifacts that constitute product line assets should generally be evaluated
prior to use against the same criteria and using the same techniques that would be used in evaluat-
ing a conventionally developed product. Even so, using properly evaluated product line assets can
result in a substantial reduction in the time and expertise required to build and evaluate each sub-
sequently derived instance product.

In a product line context, evaluations occur at the component, work product, and product levels. A
product line asset at any of these levels corresponds to a set of similar instance assets; therefore,
an evaluation may address either a single derived instance or a set of instances represented by the
asset. Any asset evaluation consists of a combination of peer/mentor/expert reviews, testing, and
formal methods. Any defect found in the specification or implementation of any asset instance is
treated as being a defect in the asset as a whole.

A single-instance strategy for evaluating an asset entails (1) identifying relevant instance-level
evaluation criteria, (2) deriving an instance that conforms to evaluation preconditions, (3) evaluat-
ing the instance relative to expected results, and (4) modifying the asset to correct for any defects.
By selecting and evaluating a variety of instances of the asset, the quality of the asset as a whole
will increase, along with confidence that any subsequent instance derived will be less likely to
exhibit defects. This strategy is applicable when an instance for use in a product is derived and
verified as part of the product evaluation effort; any defects that are found in this way should be
used to correct the asset, not just the specific instance.

A refinement of a single-instance strategy is a sampled-instances strategy. By statistically select-
ing instances for evaluation, based on the distribution of references to the variabilities across the
set, a higher level of confidence can be more systematically achieved for a given level of evalua-
tion effort. By selecting instances that are sufficiently diverse to cover the set, less evaluation ef-
fort is needed to discover most asset defects.

CMU/SEI-2011-TN-007 | 24

The greatest leverage is provided by an abstract strategy for evaluating an asset. With this strate-
gy, the abstract representation of the set of instances is directly analyzed. This requires using a
method that permits reasoning logically over an abstractly characterized set. When using a formal
method or model that was designed for verifying instance properties, variabilities correspond to
universal quantifiers that extend the solution space over which the properties can be evaluated.
This approach provides the means to demonstrate that a property holds—not just for individual
asset instances—but also for every instance in the set. In addition, the conformance of the instance
set to its specification can be reasoned over the logical space determined by the variabilities that
characterize the asset as being a set.

In lieu of a formal method, evaluators can use review or static testing to analyze whether any
combination of variability choices would result in an instance that would violate an asset’s cor-
rectness properties. These informal techniques are imperfect but can increase confidence that all
instances of the asset satisfy critical criteria without having to separately evaluate every derivable
instance of the asset. These properties should still be verified specifically for each product that is
subsequently derived for a customer; however, the effort to evaluate a derived product will be
significantly reduced due to the improved quality, absence of defects, and reduced need for re-
work resulting from prior family-level evaluations.

6.3 Establishing a Testing Product Line

The second opportunity for improvement results from needing to repeatedly test multiple similar
products or versions. Because products are similar, the required testing is also similar—requiring
similar test plans, test scenarios and cases, test data, and test results—alike to the degree that cus-
tomers’ needs are alike and differing to the degree that they differ. By developing testing mate-
rials that are customizable in terms of how products’ behaviors are meant to differ (i.e., treating
them as product line assets), redundant preparations for separately testing each product can be
eliminated. Investing in testing product line assets can pay off even if the tested products are be-
ing developed conventionally, as long as the similarity in their behaviors is understood.

Just as product line variabilities characterize customer and engineering choices that determine the
exact content of each product, similar choices determine the content of each product’s test mate-
rials. Rather than building test materials uniquely for each product or building them for one prod-
uct and then modifying them uniquely for each succeeding product, product line testers would
instead create adaptable test materials. Adaptable materials are explicitly customized, structured,
and annotated based on the variabilities associated with the product line.

A further opportunity to leverage product line concepts for testing is to create an adaptable testing
environment. With adaptability, the testing environment can be configured as needed to accurate-
ly replicate a variety of targeted business operational environments. This is beneficial when build-
ing similar products for different customers or for a customer whose operational environment can
vary geographically or over time. In these cases, each product needs to be evaluated in a facsimile
operational environment that has been tailored to match the customer’s specified environment.
The more sensitive a product’s behavior is to its operational environment, the more important it is
to evaluate the product in a test environment that accurately mimics the behavior of the actual
environment. Again, rather than building or modifying a facsimile operational environment for
every product, the facsimile environment can be constructed as an instance of a family that is to

CMU/SEI-2011-TN-007 | 25

be adaptable to the variabilities that characterize the operational environments into which prod-
ucts may be deployed. This can have the added advantage that the product will need less extensive
testing in its actual operational environment, where the cost of testing as well as the risks and cost
of correcting defects tend to be excessive.

CMU/SEI-2011-TN-007 | 26

7 Improving Product Evaluation Practices

Opportunities exist in most software development efforts to improve and streamline product eval-
uation practices. The preceding sections have provided some perspectives in general on how
product evaluation can be performed most effectively within an acquisition effort. These perspec-
tives were based on specific anecdotal experiences in working with a variety of DoD acquisition
programs and their development contractors. Listed below are examples of limited propositions
that may (in appropriate situations) result in beneficial improvements:

Establish precise, objective criteria for product acceptance

The role of product evaluation in product acceptance is to define a set of usage scenarios that will
expose whether a product’s behavior provides the capabilities expressed in customer needs. The
basis for these scenarios should be acceptance criteria that formalize the acquirer’s understanding
of customer needs. Product acceptance should be defined as demonstrating that a product behaves
as expected for a set of scenarios that properly represent the specified acceptance criteria. Any
product that satisfies product requirements, which in turn has been verified as being in confor-
mance with acceptance criteria, should operate properly under usage scenarios that are believed to
be representative of criteria.

The goal of product development is to provide such a product. In addition, product quality should
be measured in terms of the effectiveness of design tradeoffs in resolving conflicting quality
attributes. Based on statistical analyses of product evaluation efforts prior to initiating product
acceptance, the product should meet an expected level of confidence that it is free of unknown
residual defects.

Designate product evaluators as authoritative proxies for the customer and
associated users

The purpose of product evaluation is to ensure that the product as-built is the product that best
meets the customer’s actual needs. To achieve this, there must be a constant customer “presence”
throughout development. Product evaluators may themselves be users but more typically will be
people who broadly understand essential aspects of the customer enterprise, including users’
roles, activities, and goals. This expertise should be augmented through direct liaison with other
domain experts and knowledgeable users. Fixing a product that is defective but essentially fits the
customer’s needs is much easier than correcting a soundly built but conceptually flawed product.

Pair product evaluators with developers throughout product development

Product evaluators are likely to have a better understanding of what the customer needs as product
developers work through alternative solutions. Product evaluators gain deeper insight into solu-
tion tradeoffs as product developers gain deeper insight into customer needs. In the case of com-
ponent implementers, product evaluators will provide expertise and access to facilities that can
reduce the developer’s unit testing efforts and ensure readiness for integration testing. With ap-
propriate expertise, a product evaluator can pair with developers of multiple components to gain
improved design-level insights; similarly, developers who are familiar with the customer’s needs
can be product evaluators for other developers.

CMU/SEI-2011-TN-007 | 27

Perform product evaluation activities throughout product development

The lowest cost time to correct defects in a product is early, while the product is being developed.
Reviews, model-based analyses, or tests, as appropriate to particular work products, should be
performed continuously with a focus particularly on areas of greatest risk as judged by the devel-
oper. Requirements and design reviews should focus particularly on establishing bounds for sys-
temic quality factors (e.g., performance, reliability, safety, security, usability) and how the prod-
uct will satisfy these. Similarly, implementation reviews should focus on identifying and handling
abnormal conditions.

Institute recurring active reviews of every work product as it is being developed

Focused peer/mentor/expert reviews are the earliest, least expensive, and most comprehensive
means of finding defects in a product; active reviews are an effective method of performing such
reviews. Reviewers are selected for specific expertise and focused on answering specific topical
questions about aspects of the work product that the developer feels least certain of. An assigned
product evaluator is a reviewer of first resort, with a focus on consistency, quality, and fit to cus-
tomer needs. Reviews by authors of related development work products can expose inconsisten-
cies and misunderstandings: in particular, requirements authors and designers should continuously
review implementation work products to ensure developers have a shared understanding [Parnas
1985].

Substitute focused expert technical reviews for formal management progress
reviews and technical oversight meetings

Management meetings typically consume too much time of too many people who should be doing
other work. Automate tracking and reporting of planned progress, with management meetings
scheduled “by exception” when advances or slips in schedules warrant re-planning or resolution
of specific coordination issues. Use meetings as small, topically focused venues for resolving re-
source utilization conflicts or for identifying and resolving difficult requirements and engineering
tradeoffs with responsible developers. Include knowledgeable evaluators and subject matter ex-
perts in these meetings.

Institute rapid iteration over the product development process

The best critics of a work product are other developers who use it: designers discover require-
ments issues, implementers discover design issues, and integrators discover implementation is-
sues. Looking across all the work products, evaluators discover developer misconceptions, mi-
sunderstandings, and inconsistencies. No work product should be considered finished until it has
been applied successfully, after correction of any discovered discrepancies. Incremental develop-
ment and repeated iterative refinement of each work product is the shortest path to a quality prod-
uct.

Task product evaluators to verify consistency across product development
activities

Beyond establishing that each element of the product exhibits a correct understanding of customer
needs, product evaluation needs to ensure that all elements are defining a consistent solution ap-
proach to meeting those needs.

CMU/SEI-2011-TN-007 | 28

Ensure that products are evaluated for proper behavior in nominal, stress, and
abnormal conditions

Typically, the focus of evaluation is on how the product is expected to behave “normally,” provid-
ing the capabilities that the customer needs; however, insufficient focus on product behavior un-
der stress or abnormal conditions can result in missing defects that will lead to operational failures
at the worst times. Stress conditions include performance and usability under heavy load such as
communications or input data losses or reduced responsiveness to user actions. Abnormal condi-
tions include device failures, data integrity losses under load, security lapses due to attempted mi-
suse, or failures due to residual defects.

Recognize that an integration failure represents a lack of design-implementation
discipline

It is the responsibility of the design to define the components that are implemented to build the
product and how those components interact. Integration fails only if the design is flawed or a
component implementation has failed to conform to the design. These failures should be found in
design and implementation evaluations, not when integration is attempted—integration should be
a purely mechanical process that never fails if implementation evaluations have been properly
performed.

Plan to discover defects closest in time to their cause

The most cost-effective time to discover a defect is immediately after its creation. Deferral of ef-
forts that could discover a defect until later in the process only serves to increase the difficulty of
finding and correcting it and the risk that rework will take unplanned time and introduce new de-
fects.

Whenever a defect is found, evaluate whether the defect could have been detected earlier. Identify
product evaluation actions that would have detected such defects and plan suitable verification
actions to ensure earlier detection of these defects in the future.

Use automation to reduce product evaluation effort

Product evaluation can be time consuming and repetitious. Such work can be automated, in part
with commercial tools and otherwise using product line techniques. Initial setup of evaluation
mechanisms may require manual effort but the application of these mechanisms and analysis of
results against expectations should be largely automated. The goal should be to require human
effort only by exception, such as when the product exhibits unexpected behavior. Recognize,
however, that automation of product evaluation efforts is itself a development effort, requiring
appropriate expertise in both software engineering methods and product evaluation techniques.

Breakdown artificial process boundaries

Treat product evaluation, including testing, not as a separate activity but as an integral aspect of
every development activity. No activity should be considered complete until it has satisfied expli-
cit evaluation criteria, with the goal of having no avoidable defects that will cause subsequent re-
work. Throughout development, developers and evaluators should collaboratively review and test
the product to ensure with high certainty that post-development evaluation will not find any criti-

CMU/SEI-2011-TN-007 | 29

cal defects. Developers and evaluators should also work together throughout development to en-
sure that there is a common understanding of customer needs and tradeoffs so that defects will be
avoided or found and corrected early.

Track effort in terms of tasks requiring similar skills rather than by project phase

Although a project might, for management purposes, be organized into a development and accep-
tance phase, both phases require performance of development and testing tasks. Staffing and
budgets should reflect that these skills are needed in both phases. Rework that occurs during the
test phase should be viewed as continuing development work, not as a normal aspect of testing.
Similarly, product evaluators that help developers during the development phase to better test
their work products are nevertheless performing test, not development, activities. Because of this
functional overlap, improvements in either development or test practices will benefit both phases.

CMU/SEI-2011-TN-007 | 30

References

[Bennett 2005]
Bennett, Ted L. & Wennberg, Paul W. “Eliminating Embedded Software Defects Prior to Integra-
tion Test.” CrossTalk (December 2005): 13-18.

[Bhor 2001]
Bhor, Adrita. Software Component Testing Strategies (Technical Report UCI-ICS-02-06). De-
partment of Information and Computer Science, University of California, Irvine, 2001.
www.ajevans.com/articles.php3?dlitem=componenttesting

[Boehm 2001]
Boehm, Barry & Basili, Victor R. “Software Defect Reduction Top 10 List.” IEEE Computer
(January 2001): 135-137.

[Campbell 2002]
Campbell, Grady H., Jr. A Software Product Line Vision for Defense Acquisition (CMU/SEI-
2002-TN-002). Software Engineering Institute, Carnegie Mellon University, 2002.
www.sei.cmu.edu/library/abstracts/reports/02tn002.cfm

[Campbell 2004]
Campbell, Grady. “Reconsidering the Role of Systems Engineering in DoD Software Problems.”
Software Intensive Systems Acquisition Symposium, Software Engineering Institute, Carnegie
Mellon University, 2004. www.sei.cmu.edu/library/abstracts/presentations/campbelljan2004.cfm

[Feiler 2010]
Feiler, Peter H. & Hansson, Jörgen. “Toward Model-Based Embedded System Validation through
Virtual Integration.” SoftwareTechNews 12, 4 (January 2010): 26-33. softwaretech-
news.thedacs.com/stn_view.php?stn_id=52&article_id=146

[Kopetz 1976]
Kopetz, H. Software Reliability. Springer-Verlag, 1976 (ISBN: 978-0333233726).

[Linger 1996]
Linger, Richard C. & Trammell, Carmen J. Cleanroom Software Engineering Technology, Clea-
nroom Software Engineering Reference Model (CMU/SEI-96-TR-022). Software Engineering
Institute, Carnegie Mellon University, 1996.
www.sei.cmu.edu/library/abstracts/reports/96tr022.cfm

[McGregor 2001]
McGregor, John D. Testing a Software Product Line (CMU/SEI-2001-TR-022). Software Engi-
neering Institute, Carnegie Mellon University, 2001.
www.sei.cmu.edu/library/abstracts/reports/01tr022.cfm

CMU/SEI-2011-TN-007 | 31

[Parnas 1985]
Parnas, David L. & Weiss, David M. “Active Design Reviews: Principles and Practices,” 215-
222. Proceedings of the 8th International Conference on Software Engineering. Los Alamitos,
CA, Aug. 1985. IEEE Computer Society Press, 1985.

[Perry 2000]
Perry, William E. Effective Methods for Software Testing. John Wiley & Sons, 2000 (ISBN: 978-
0764598371). www.wiley.com/WileyCDA/WileyTitle/productCd-0764598376.html

[Pomeroy-Huff 2009]
Pomeroy-Huff, Marsha et al. “Competency Area 5: Planning and Tracking Software Quality,” 47-
54. The Personal Software Process (PSP) Body of Knowledge, Version 2.0 (CMU/SEI-2009-SR-
018). Software Engineering Institute, Carnegie Mellon University
www.sei.cmu.edu/library/abstracts/reports/09sr018.cfm

[Spillner 2007]
Spillner, Andreas, Linz, Tilo, & Schaefer, Hans. Software Testing Foundations. Rocky Nook,
2007 (ISBN: 978-1933952086). www.rockynook.com/books/198.html

[Weinstock 2004]
Weinstock, Charles B., Goodenough, John B., & Hudak, John J. Dependability Cases (CMU/SEI-
CMU-2004-TN-016). Software Engineering Institute, Carnegie Mellon University, 2004.
www.sei.cmu.edu/library/abstracts/reports/04tn016.cfm

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

October 2011

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

An Acquisition Perspective on Product Evaluation

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Grady H. Campbell, Jr., Harry Levinson, and Richard Librizzi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2011-TN-007

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This technical note focuses on software acquisition and development practices related to the evaluation of products before, during, and
after implementation. From engagements with numerous DoD acquisition programs, it has been observed that a number of recurring is-
sues reduce the effectiveness of how software-reliant products are evaluated. An acquisition effort consists of identifying the customer’s
needs, selecting or developing a product that is responsive to those needs, and then evaluating the product to determine if it properly
addresses the identified needs. This technical note describes the Product Evaluation (verification, validation, and certification) process
including test, reviews, and formal methods. It also makes the argument that Product Evaluation should not be deferred until after a
product has been built, but should begin as soon as the customer’s needs have been identified and should continue throughout the ac-
quisition effort.

14. SUBJECT TERMS

Acquisition, development practices, product evaluation, software-reliant products

15. NUMBER OF PAGES

42

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	An Acquisition Perspective on Product Evaluation
	Table of Contents
	List of Figures
	Acknowledgments
	Executive Summary
	Abstract
	1 Introduction
	2 Understanding Product Evaluation in an Acquisition Context
	3 Prerequisites to Product Evaluation
	4 Evaluating a Product during Development
	5 Evaluating a Product after Development
	6 Product Evaluation in a Product Line Context
	7 Improving Product Evaluation Practices
	References

